«Росатом» рассказал о смене бестселлера среди атомных реакторов… или коротко о проекте ПРОРЫВ

Россия

«Философский камень» и «Вечный двигатель» энергетики в одном флаконе…


Госкорпорация «Росатом» планирует начать экспорт реактора на быстрых нейтронах «БРЕСТ-300» и модуля по переработке использованного ядерного топлива в 2030-2040 годах, сообщил журналистам генеральный директор госкорпорации Алексей Лихачев, передает ТАСС.

Чернобыль и Фукусима остаются в прошлом… «Росатом» приступил к строительству первого в мире безопасного ядерного реактора.

На площадке «Сибирского химического комбината» (г. Северск), принадлежащего госкорпорации «Росатом», стартовало строительство уникального энергоблока БРЕСТ-ОД-300. Это важнейшее событие для мировой атомной энергетики, так как реактор БРЕСТ, который ляжет в его основу, является первой в мире концепцией, отвечающей совокупности требований крупномасштабной атомной энергетики по безопасности и экономике.

Энергоблок уставной электрической мощностью 300 МВт с реактором на быстрых нейтронах войдет в состав опытно-демонстрационного энергетического комплекса (ОДЭК), который создается в рамках проекта «Прорыв». Реализация последнего стартовала еще в 2010 году. Запуск уникального реактора ожидается уже после 2025 года.

Стоит отметить, что БРЕСТ является реактором, обладающим свойствами естественной безопасности. Его конструкция исключает разгон на мгновенных нейтронах. Следовательно, он не требует возведения дополнительных инженерных барьеров, а его применение на АЭС полностью исключает вероятность аварий вроде Чернобыля.

Еще одним немаловажным нюансом является наличие в составе будущего ОДЭК комплекса по производству уран-плутониевого ядерного топлива, а также комплекса по переработке отработавшего топлива. В итоге получится пристанционный замкнутый ядерный топливный цикл, позволяющий готовить новое горючее для реактора из выгружаемого.

В качестве топлива в БРЕСТе применяется уран-235. Его содержание в природном уране составляет менее 1%.

Сам реактор благодаря сочетанию свойств плотного нитридного уран-плутониевого ядерного топлива и свинцового теплоносителя сможет работать в так называемом равновесном режиме. Другими словами, количество наработанного плутония будет сопоставимо «сгоревшему». Следовательно, из него на вышеупомянутых комплексах можно будет изготавливать новые партии «свежего горючего» и так по кругу.

Напоследок стоит добавить, что вышеупомянутый БРЕСТ – это прототип «быстрого» реактора БР-1200 также со свинцовым теплоносителем. Согласно планам «Росатома», последний войдет в основу коммерческого энергоблока мощностью порядка 1200 МВт.

Госкорпорация «Росатом» планирует начать экспорт реактора на быстрых нейтронах «БРЕСТ-300» и модуля по переработке использованного ядерного топлива в 2030-2040 годах, сообщил журналистам генеральный директор госкорпорации Алексей Лихачев, передает ТАСС.

Проект опытно-демонстрационного энергетического комплекса, реализуемый в закрытом городе Северск Томской области, — это «прообраз большой промышленной установки», отметил он. «Наш бестселлер — это WWR-1200, но исходим из того, что на смену этому хиту международных продаж придет промышленно-экономический комплекс, в который войдут широко известные WWR-1200, реакторы на быстрых нейтронах и, самое главное, — это пристанционные модули по переработке топлива», — сказал Лихачев.

О ПРОЕКТЕ

Реализуемый Госкорпорацией «Росатом» проект «Прорыв» нацелен на достижение нового качества ядерной энергетики, разработку, создание и промышленную реализацию замкнутого ядерного топливного цикла (ЗЯТЦ) на базе реакторов на быстрых нейтронах, развивающих крупномасштабную ядерную энергетику.

Цель работы в рамках проектного направления «Прорыв» – создание ядерно-энергетических комплексов, включающих в себя АЭС, производства по регенерации (переработке) и рефабрикации ядерного топлива, подготовке всех видов РАО к окончательному удалению из технологического цикла для крупномасштабной ядерной энергетики, отвечающих базовым требованиям:

1. Исключение аварий на АЭС, требующих эвакуации, а тем более отселения населения;

2. Обеспечение конкурентоспособности ядерной энергетики в сравнении с альтернативной генерацией, в первую очередь, с парогазовыми установками, но также и солнечными и ветровыми станциями при учёте всех затрат топливных циклов (на основе сравнительного анализа LCOE);

3. Формирование ЗЯТЦ для полного использования энергетического потенциала природного уранового сырья;

4. Последовательное приближение к радиационно-эквивалентному (по отношению к природному сырью) захоронению РАО;

5. Технологическое укрепление режима нераспространения (последовательный отказ от обогащения урана для ядерной энергетики, наработки оружейного плутония в бланкете и выделения при переработке ОЯТ, сокращение транспортировки ядерных материалов).

На территории Сибирского химического комбината возводится опытно-демонстрационный энергетический комплекс (ОДЭК) в составе энергоблока с реактором БРЕСТ-ОД-300 со свинцовым теплоносителем и замыкающего ядерный топливный цикл пристанционного завода, который включает в себя модуль переработки (МП) облученного смешанного уран-плутониевого (нитридного) топлива и модуль фабрикации/рефабрикации (МФР) для изготовления стартовых твэлов из привозных материалов, а впоследствии твэлов из переработанного облученного ядерного топлива.

ОДЭК впервые в мире должен продемонстрировать устойчивую работу полного комплекса объектов, обеспечивающих замыкание топливного цикла. Пристанционный вариант организации топливного цикла (ПЯТЦ) позволяет отработать технологии «короткого топливного цикла» в минимальные сроки в пределах одной площадки.Пристанционный топливный цикл, состоящий из двух основных модулей – МФР и МП, имеет общую систему обращения с радиоактивными отходами (РАО). На первом из них впервые в мире создается опытно-промышленное производство смешанного нитридного топлива на основе энергетического плутония и обеднённого урана с использованием технологии карботермического синтеза.

Модуль фабрикации и рефабрикации (МФР)

Единый модуль фабрикации и рефабрикации топлива позволяет работать как с исходными материалами, так и с продуктами переработки ОЯТ реактора БРЕСТ-ОД-300, а также предусматривает включение в топливо минорных актинидов для последующей их трансмутации.

Наиболее существенные результаты получены в разработке технологии плотного нитридного смешанного уран-плутониевого топлива. Экспериментальные тепловыделяющие сборки, изготовленные на АО «СХК», доказали свою эффективность в ходе реакторных испытаний и по итогам послереакторных исследований.

Завершена постановка в БН-600 18-ти ТВС (более 1000 твэлов) для обоснования работоспособности твэлов РУ БРЕСТ-ОД-300 и БН-1200. Во время испытаний не было ни одной разгерметизации оболочек при максимальном выгорании до 7,5% т.а., которое превышает выгорание, достигнутое на АЭС с реакторами на тепловых нейтронах. Послереакторные исследования 6 экспериментальных ТВС (КЭТВС и ЭТВС) со смешанным нитридным и оксидным уран-плутониевым топливом показали, что дефектов конструктивных элементов не выявлено и твэлы сохранили герметичность. Облучение ЭТВС-11 в РУ БН-600 в течение 7 микрокампаний обеспечило обоснование работоспособности твэлов стартовой загрузки РУ БРЕСТ-ОД-300.

Полученные результаты дают основание для продолжения работ по обоснованию использования смешанного нитридного топлива при создании РУ БРЕСТ-ОД-300.

В данный момент идет монтаж основного технологического оборудования на модуле фабрикации-рефабрикации топлива Опытно-демонстрационного энергокомплекса (ОДЭК).

БРЕСТ

Ключевым элементом ОДЭК является первый в мире инновационный демонстрационный опытно-промышленный энергоблок на базе быстрого реактора БРЕСТ-ОД-300 со свинцовым теплоносителем, в полной мере реализующий принципы «естественной безопасности».

Особенности реактора позволили отказаться от больших объёмов гермооболочки, ловушки расплава, большого объема обеспечивающих систем, а также снизить класс безопасности внереакторного оборудования.

Интегральная конструкция реакторной установки позволяет локализовать течи теплоносителя в объеме корпуса РУ и исключить осушение активной зоны. Это исключает аварии, требующие эвакуации населения.

В соответствии с дорожной картой создания опытно-демонстрационного энергокомплекса, получены результаты НИОКР в обоснование основного оборудования, изделий активной зоны, конструкционных материалов, технологии свинцового теплоносителя реакторной установки (РУ) БРЕСТ-ОД-300, проведена верификация расчетных кодов. Технические решения по оборудованию РУ БРЕСТ-ОД-300 экспериментально обоснованы на макетах компонентов оборудования.

Получены положительные заключения Главной государственной экспертизы на проектную документацию энергоблока с РУ БРЕСТ-ОД-300.

Были разработаны и согласованы со всеми заинтересованными организациями вторые редакции ФНП «Требования к устройству и безопасной эксплуатации корпуса блока реакторного, оборудования и трубопроводов ядерной установки со свинцовым теплоносителем» (НП-117), «Требования к обоснованию прочности корпуса блока реакторного, оборудования и трубопроводов ядерных установок со свинцовым теплоносителем» (НП-118) и вторые редакции стандартов Госкорпорации «Росатом» «Обеспечение целостности корпуса блока реакторного, оборудования и трубопроводов ядерной установки со свинцовым теплоносителем» по темам (16 стандартов) в поддержку НП-117 и НП-118.

Модуль переработки (МП)
На модуле переработки ОДЭК предполагается поэтапно реализовать комбинированную технологию переработки СНУП ОЯТ, состоящую из головных пирохимических операций, гидрометаллургического аффинажа урана, плутония и нептуния (U-Pu-Np), включая выделение и разделение америция (Am) и кюрия (Cm), а также получение порошков оксидов U-Pu-Np-Am. Для пирохимического передела на лабораторном уровне подтверждена техническая реализуемость основных операций. Выбран окончательный вариант технологической схемы пирохимического передела.

Экология

Радиационно-эквивалентный подход в ЗЯТЦ – основной способ решения потенциальных экологических проблем при обращении с РАО, а также главный аргумент при работе с общественностью и «радиофобией». Он фактически означает, что радиационная безопасность окружающей среды гарантируется не техническими средствами и способами, а самим отсутствием активности сверх имеющихся уже природных уровней.

На сегодняшний день уже экспериментально продемонстрирована возможность глубокого извлечения актинидов (>99,9%) из всех видов РАО, что обосновывает техническую достижимость радиационно-эквивалентного подхода к захоронению РАО.

В рамках сценария развития в 21 веке ядерной энергетики России с реакторами на тепловых и быстрых нейтронах установлено:

• Выравнивание ожидаемых доз облучения от РАО и от природного сырья (радиационная эквивалентность) достигается через 287 лет после наработки отходов ядерной энергетики в 2100 г.;

• Выравнивание пожизненных радиационно-обусловленных рисков возможной индукции онкозаболеваний от РАО и от природного сырья (радиологическая эквивалентность) достигается через 99 лет после наработки отходов ядерной энергетики в 2100 г.

Подготовлен атлас радиоэкологической обстановки в 30-ти км зоне АО «СХК», отражающий состояние окружающей среды в районе до начала эксплуатации. Сделан он для того, чтобы в дальнейшем, спустя годы, когда все объекты опытно-демонстрационного энергокомплекса вступят в строй, провести повторные исследования экологических и природных параметров и сравнить их с теми, что отражены в атласе.

В 2017 году сразу несколько научно-исследовательских институтов приступили к работе над его наполнением. Путем взятия большого количества соответствующих проб были исследованы практически все природные и сельскохозяйственные ресурсы.

Кириенко назвал строительство БРЕСТа прорывом в новую эру энергетики

Россия становится первой в мире страной, которая добилась замкнутого ядерного топливного цикла, отметил первый заместитель руководителя администрации президента РФ, председатель наблюдательного совета «Росатома» Сергей Кириенко.

Во вторник в Томской области началось строительство первого в мире энергоблока нового поколения БРЕСТ-ОД-300.

«Прорыв действительно случился. Свершилось то, к чему мы долгое время готовились, над чем трудились, о чем мечтали: Россия становится первой в мире страной, которая добилась замкнутого ядерного топливного цикла», — отмечается в приветствии Кириенко к участникам и гостям церемонии открытия, которое зачитал генеральный директор «Росатома» Алексей Лихачев.

Представитель Кремля отметил, что это означает «переход к бесконечно возобновляемой ресурсной базе чистой и безопасной энергетики». По его словам, замкнутый ядерный топливный цикл не зря сравнивают с «философским камнем» или «вечным двигателем» энергетики.

Подписаться
Уведомление о
guest
0 комментариев
Встроенные отзывы
Посмотреть все комментарии

Последние статьи